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Bayesian versus broader clustering literature

Broader clustering literature

Clustering is basically to divide observations into groups. Many approaches:

1 Similarity-based clustering (K-means, PAM, SLINK, Spectral Clustering).

2 Density-based clustering (DBSCAN, Mean-Shift).

3 Model-based clustering (Mixture models)

4 . . . Projective clustering, Neural Network based clustering, etc.

Application determines the right clustering approach (Hennig 2015, von Luxburg,
Williamson, Guyon, 2011)

What kind of clusters do we wish to find?

Cluster “nearby” observations =⇒ Similarity-based

Arbitrary-shaped but well-separated clusters =⇒ Density-based

Simple model for observations in each group =⇒ Model-based
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Bayesian versus broader clustering literature

Typical “Bayesian clustering” is model-based

Starting from a simple (e.g. Gaussian) component kernel g(y |θ):

x1, . . . , xn ∼
K∑

k=1

πkg(·|θk) or

{
zi |π ∼ Categorical(π1, . . . , πK )

xi |zi ∼ g(·|θzi ), for i = 1, . . . , n

where zi ∈ {1, . . . ,K} is the cluster membership of xi , and π = {πk}Kk=1 are the
component weights, and {θk}Kk=1 are component parameters.

One of the following two priors are commonly used for tractability:

Mixture of Finite Mixtures (Miller &
Harrison 2018) with K <∞

π ∼ Dirichlet(α, . . . , α)

θk ∼ G0(·) for k = 1, . . . ,K

K ∼ pK (·)

Dirichlet Process Mixture (e.g. Lo 1984;
Neal 2000) with K = ∞

π = (π1, π2, . . .) ∼ StickBreaking(α)

θk ∼ G0(·) for k = 1, 2, . . .

α ∼ Gamma(a, b)
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Bayesian versus broader clustering literature

A decision is required to obtain final clustering

Conditional on data Xn = {x1, . . . , xn}, we get a joint posterior distribution on
z = (z1, . . . , zn), π = (π1, . . . , πK ), and {θk}Kk=1 (and possibly K ).

C = {Ch1 , . . . ,ChH} is the partition of Xn induced by z, i.e.
Ch

.
= {xi : zi = h}.

This induces a posterior on P(Xn), the set of all partitions of Xn.

In practice, we have a sample of partitions {C (s)}Ss=1 from MCMC.

Wade and Ghahramani (2018): For a loss L(·, ·) on P(Xn) (e.g. VI, Binder’s),
choose the clustering Ĉ that minimizes the posterior expected loss:

Ĉ ≈ arg min
C ′∈P(Xn)

1

S

S∑
s=1

L(C (s),C ′).

Solve this optimization using salso package (Dahl, Johnson, Müller, 2022).

Thus when L is a metric Ĉ is a posterior Fréchet mean, “averaging” {C (s)}ns=1
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Bayesian versus broader clustering literature

Why we like Bayesian clustering

A statistical/density-based approach to clustering: Data x1, . . . , xn are
assumed to be samples from a larger population f , and the clustering is
actually driven by inference of f .

Quantify uncertainty of clustering: Bayesian methods naturally provide a
posterior distribution on the space of partitions P(Xn) rather than a point
estimate.

Focus on careful modeling of the data using domain-specific prior information
rather than experiment with a zillion clustering methods.

The last advantage seems distinctly Bayesian.

See Wade (2023) for a survey on Bayesian clustering.
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Bayesian versus broader clustering literature

Limitations of model-based clustering

Issue: True clusters are split when the kernel is even slightly misspecified.

solid/black line = true density; red/dashed

line = posterior mean density. *shows only

a random subsample of the observations.

Fixes in the Bayesian setting:

Loss functions (Wade &
Ghahramani 2018; Dahl et al. 2022)

Mode-merging (Dombowski &
Dunson 2024)

Increasing kernel flexibility
(Frühwirth-Schnatter & Pyne 2010)

Mixtures of mixtures (Malsiner-Walli
et al. 2017; Stephenson et al. 2019)

Coarsening (Miller & Dunson, 2018)

Gibbs posteriors (Rigon et al. 2023)

Other types of Bayesian clustering?
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Bayesian density based clustering

Outline
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Bayesian density based clustering

Density Based Clustering

What clustering do we want in the limit of infinite data from a density f ?

The answer determines a population-level clustering functional:

ψ : D(X ) → P(X )

where

1 D(X ) = a collection of densities on X
2 P(X ) = the set of all partitions of X .

Examples:

If f is an identifiable mixture model then ψ(f ) can be its Bayes optimal
partition (e.g. Aragam et al. 2020).

If f is multimodal then ψ(f ) could be partition of X based on the basins of
attraction of its modes (e.g. Chacón 2015).

If f is any density then ψλ(f ) can denote the connected components of the
level set {f ≥ λ} (Hartigan 1975; Rinaldo et al. 2012).
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Bayesian density based clustering

Bayesian Density Based Clustering

Given data Xn ⊆ X , the clustering functional ψ : D(X ) → P(X ) provides

ψn : D(X ) → P(Xn) ψn(f )
.
= ψ(f )

∣∣
Xn

a clustering of the data points ψn(f ) ∈ P(Xn) when the true density f is known.

Starting from any prior model PM(·) for the data generating density f , draw
posterior samples of f and compute resulting clustering:

f (1), . . . , f (S) ∼ PM(·|Xn) =⇒ ψn(f
(1)), . . . , ψn(f

(S)) ∈ P(Xn).

Final averaging step: Given loss L(·, ·) between clustering, we consider the
clustering point-estimate as:

Ĉ ≈ arg min
C ′∈P(Xn)

1

S

S∑
s=1

L(ψn(f
(s)),C ′)

1 Expands the kinds of clustering that can be considered in the Bayesian framework.

2 Separates density estimation from clustering so that any model can be used.
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Ĉ ≈ arg min
C ′∈P(Xn)

1

S

S∑
s=1

L(ψn(f
(s)),C ′)

1 Expands the kinds of clustering that can be considered in the Bayesian framework.

2 Separates density estimation from clustering so that any model can be used.

Miheer Dewaskar (UNM) Bayesian Level Set Clustering CFE-CMStatistics 25 11 / 21



Bayesian density based clustering

Bayesian Density Based Clustering

Given data Xn ⊆ X , the clustering functional ψ : D(X ) → P(X ) provides

ψn : D(X ) → P(Xn) ψn(f )
.
= ψ(f )

∣∣
Xn

a clustering of the data points ψn(f ) ∈ P(Xn) when the true density f is known.

Starting from any prior model PM(·) for the data generating density f , draw
posterior samples of f and compute resulting clustering:

f (1), . . . , f (S) ∼ PM(·|Xn) =⇒ ψn(f
(1)), . . . , ψn(f

(S)) ∈ P(Xn).

Final averaging step: Given loss L(·, ·) between clustering, we consider the
clustering point-estimate as:
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Bayesian density based clustering

Level set clustering

Active area since Wishart (1969) and Hartigan (1975).

Given f and level λ > 0, the level set clustering is a sub-partition of X defined as

ψλ(f )
.
= Connected components of {x ∈ X : f (x) ≥ λ}

Heuristics to choose λ using elbow plots or a fixed fraction of noise points
when clusters are well separated (Ester et al. 1996, Cuevas et al. 2001)

In generally examine the cluster tree over all λ > 0 (Campello et al. 2015,
Steinwart et al. 2023)

Miheer Dewaskar (UNM) Bayesian Level Set Clustering CFE-CMStatistics 25 12 / 21



Bayesian density based clustering

Bayesian Level Set (BALLET) Clustering

We implement the previous methodology by

using a computable surrogate ψ̂δ,λ(f ) from level set clustering literature, and

modifying Binder’s loss to give a metric on the space of sub-partitions of Xn.

Important notes:

Points with f (xi ) < λ are declared
as noise. (Black points in the figure)

Level λ > 0 is a loss parameter and
not part of the model (thus not
learned from data). We use previous
strategies.

Compared to DBSCAN (Ester et al.
1996), we allow use of carefully
chosen priors and quantifying
clustering uncertainty.
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Application: Finding clusters of galaxies in the night sky.
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Application: Finding clusters of galaxies in the night sky.

Edinburgh-Durham Southern Galaxy Catalog

Around 41K galaxies (grey points)
observed in a 10◦ × 10◦ section of
the sky (Nichol et al., 1992).

Level set clustering corresponding to
scientifically motivated λ can help
understand cosmological models
(Jang, 2006).

Available catalogs of suspected
galaxy clusters for validation

‘+’ Abell catalog (Abell et al.,
1989) – handpicked.
‘×’ EDCCI (Lumsden et al.,
1992) – software generated.
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Application: Finding clusters of galaxies in the night sky.

Fast density sampling using mixture of histograms

For fast sampling of density f from its
posterior (n ≈ 40K data points), we
model f as a mixture of K = 50
histograms

f (x) =
1

K

K∑
k=1

H(x ;Bk , ρ⃗k),

where H(x ;Bk , ρ⃗k) is a histogram
density estimator with bins Bk (fixed)
and weight vector ρ⃗k .

Next we use a mean-field type variational
approximation for the joint posterior of
{ρ⃗k}Kk=1 by independently sampling each
ρ⃗k based on all the data (conjugate).
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Application: Finding clusters of galaxies in the night sky.

BALLET vs DBSCAN clustering

DBSCAN parameter was hand-tuned to avoid many false positives. In contrast, BALLET

results were stable to the choice of its parameter δ (but not the level λ).
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Application: Finding clusters of galaxies in the night sky.

BALLET clustering uncertainty: 95% credible bounds

Like Wade & Ghahramani (2018) we summarize the 95% credible ball using upper and

lower bounds using an associated Hasse diagram on the space of sub-partitions.
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Application: Finding clusters of galaxies in the night sky.

Validation of clusters against known catalogs

EDCCI catalog

Method Sensitivity Specificity Exact Match

DBSCAN 0.71 0.25 0.23
DBSCAN1 0.69 0.63 0.45

BALLET Lower 0.29 0.87 0.67
BALLET Est. 0.67 0.69 0.51
BALLET Upper 0.86 0.42 0.32

Abell catalog

Method Sensitivity Specificity Exact Match

DBSCAN 0.40 0.18 0.16
DBSCAN1 0.37 0.42 0.34

BALLET Lower 0.21 0.73 0.67
BALLET Est. 0.40 0.40 0.26
BALLET Upper 0.56 0.34 0.27
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Application: Finding clusters of galaxies in the night sky.

Conclusion

We propose a framework for Bayesian density based clustering that separates
density estimation from clustering.

This clustering is consistent as long as the map f 7→ ψ(f ) is “continuous”
and the density estimation is consistent. We carefully check these conditions
for BALLET.

Application to the galaxy clustering problem. Compared to DBSCAN, BALLET
provides clustering uncertainty and allows careful prior modeling.

Future Directions:

Handle overlapping clusters: Approach modal clustering by the connection to
level set cluster tree tree (Arias-Castro & Qiao, 2023).

High-dimensional setting: Cluster latent factors (Chandra et al. 2023).

Regression setting: See Chacón (2020).
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Application: Finding clusters of galaxies in the night sky.

Thank You!

Any questions or suggestions?

Pre-print: https://arxiv.org/abs/2403.04912

Email: mdewaskar@unm.edu

Acknowledgements: This work was partially funded by grants R01-ES028804 and
R01-ES035625 from the NIH and N00014-21-1-2510 from ONR.
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Toy clustering across different models
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BALLET implementation details

Problem: How to compute ψλ(f )?

Following the level set clustering literature (Rinaldo and Wasserman, 2010;
Sriperumbudur and Steinwart, 2012), we use a surrogate based on the Devroye
and Wise (1980) estimator for {f ≥ λ}:

ψ̃δ,λ(f ) = CC(Gδ{xi ∈ Xn : f (xi ) ≥ λ})

that can be computed by single linkage clustering.

Problem How to choose δ?

Given λ > 0, we recommend the data-adaptive choice

δ̂ = q.99{dk(xi ) : f (xi ) ≥ λ}

where q is the quantile function and dk(x) is the k-NN distance of x to Xn.

As long as k ≫ log n, we show that BALLET estimator is consistent with this
choice of δ̂.

More details: Sub-partitions (forms a lattice), choice of loss (modified Binder’s
applicable to sub-partitions), and solving the optimization using SALSO.
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Consistency of Bayesian Density-based clustering

Suppose x1, . . . , xn
iid∼ f0. Assume further that:

1 The loss L : P(Xn)× P(Xn) → [0, 1] is a metric
2 There is a metric ρ on D(X ) such that the posterior PM(·|Xn) contracts at

rate {ϵn} to f0 in the sense that for any sequence {Kn} → ∞,

τ1(Xn) = PM(f : ρ(f , f0) > Knϵn|Xn)
P→ 0 as n → ∞

3 ψn is suitably continuous at f0 with respect to ρ and L, i.e.

τ2(Xn) = sup
f :ρ(f ,f0)≤Knϵn

L(ψn(f ), ψn(f0))
P→ 0 as n → ∞

Then triangle inequality shows that our Bayesian density-based clustering point Ĉ
is consistent for C0 = ψn(f0), namely

L(Ĉ ,C0) ≤ 2τ1(Xn) + 2τ2(Xn)
P→ 0 as n → ∞.

In our manuscript, we verify conditions 1 & 3 for level set clustering ψ = ψλ

assuming that condition 2 holds for some ϵn → 0 with ρ(f , g) = ∥f − g∥∞.
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Finding arbitrary shaped clusters using DPMM

Top panel: simulated two-moons data. Bottom panel: tSNE plot of 4406 cells and 2000 genes from https://www.reneshbedre.com/blog/tsne.html
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