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The balls and bins problem
Simplest model to describe the power-of-choice.

Aim

Sequentially place n balls into n bin to minimize conflicts
when a centralized dispatcher is absent and n ∈ N is large.

Strategy Smallest(d):

Each incoming ball

samples d bins uniformly at random with replacement,

selects the least loaded among these d bin.

Compare: Smallest(1), Smallest(2) and Smallest(∞).
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The power of choice
Choice (d = 2) is much better than no choice (d = 1).

Maximum load is monotonically decreasing in d (coupling argument).

(Mitzenmacher, 2001) As n→∞, w.h.p:

Smallest(1) Smallest(2) Smallest(∞)

Max. load O(log n) O(log log n) 1

The power of choice

Drastic improvement of d = 2 over d = 1.

Applications (Mitzenmacher, Richa, Sitaraman, 2001)

Hashing, distributed computing, circuit routing and more.
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Dependence of maximum load on d
Max. load is log log n

log d
+ O(1)

Theorem : Assume 1 < dn < Poly(log n) and n→∞
The maximum load for the n Balls-and-Bins problem using strategy
Smallest(dn) is between[

log log n

log dn
− 4,

log log n

log dn
+ 4

]
w.h.p

Proof formulation (using empirical distribution of bin sizes)

Scale time t = {0, 1n , . . .
n
n} ⊆ [0, 1] and let

Gn(i , t) =
# of bins with ≥ i balls at time t

n
and gn(i , t) = EGn(i , t).

Then

Fixed t : {Gn(i , t)}i≥1 is the distribution of bin sizes at time t.

Max. bin load is M∗ = min { i | Gn(i + 1, 1) = 0 }.
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Proof (concentration)

Concentration (Luczak and McDiarmid)

P

(
sup
t

sup
i
|Gn(i , t)− gn(i , t)| > log n√

n

)
≤ 2 exp

(
−1

2
log2 n

)
No dependence on d .

Concentration for maximum (Luczak and McDiarmid)

W.h.p. the maximum bin load M∗ is concentrated on the two values
{i∗n , i∗n + 1} where

i∗n = min { i | gn(i , n) ≤ ln n√
n
} .

Final step (to show)

log log n

log dn
− 3 ≤ i∗n ≤

log log n

log dn
+ 3 eventually as n→∞.
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Proof continued (properties of the process)

Recall

We scaled time t = {0, 1n , . . .
n
n} ⊆ [0, 1] and defined

Gn(i , t) =
# of bins with ≥ i balls at time t

n
and gn(i , t) = EGn(i , t).

Let Gn(t) = (Gn(i , t))i≥1 be the total configuration at time t.

Gn is discrete time markov-chain

For any t and i ≥ 1

E[Gn(i , t + 1/n)− Gn(i , t) | Gn(t)] =
1

n
(Gn(i − 1, t)dn − Gn(i , t)dn)

gn(i , t) satisfies recursion

gn(i , t) =

∫ t

0
gn(i − 1, s)dn − gn(i , s)dnds + O

(
d2
n

n

)
By analyzing the recursion

gn(i , t) =

∫ t

0
gn(i − 1, s)dn − gn(i , s)dnds + O

(
d2

n

)
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Completing the proof (analyze the recursion)

Approximating gn using an ODE

Suppose {g(i , t)} satisfy:

g(i , t) =

∫ t

0
g(i − 1, s)dn − g(i , s)dnds ∀t ∈ [0, 1] and i ≥ 1

Then sups∈[0,1] |gn(i , s)− g(i , s)| ≤ 15e id i+2
n

n for any i ≥ 1.

Estimates on the growth of the ODE

exp(−d i+1
n ) ≤ g(i , 1) ≤ exp(−d i−1

n ).

Double exponential decay in i .

Recall dn < Poly(log n) and i∗n = min { i | gn(i , n) ≤ ln n√
n
}. Then

log log n

log dn
− 3 ≤ i∗n ≤

log log n

log dn
+ 3 eventually as n→∞ .
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How to choose dn?

Recall: The maximum for the n Balls-and-Bins problem using strategy
Smallest(dn) is between[

log log n

log dn
− 4,

log log n

log dn
+ 4

]
w.h.p,

provided that 1 < dn < Poly(log n).

Need dn →∞ to keep the maximum load bounded.

Choose dn = (log n)δ to keep the maximum load under 4 + 1
δ , w.h.p.

We can get near optimal performance using Smallest(log n).
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The Supermarket Model

Image credit : Debankur Mukherjee

How to route these customers?

At random.
Overhead = 0. JSQ(1)

Join the shortest queue (JSQ).
Overhead = N. JSQ(N)

JSQ(d) for d ≥ 2.
Overhead = d .

JSQ(d) : Choose a random size-d
subset of servers and join the
shortest queue among that subset.
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Application to load balancing
JSQ is optimal

Image credit : Debankur Mukherjee

Data centers : customers are
connections and computers are the N
servers.

Customers can’t be queued at
the dispatcher.

Keep queues balanced to make
best use of resources.

Need efficiency (λNµ ↑ 1).

JSQ:

Optimial among all
non-anticipating policies
(Winston, 1977).
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Asymptotic performance of JSQ
Halfin-Whitt regime : λN = 1− β√

N

Let

GN,i (t) = # of servers with ≥ i customers at time t
N .

ZN,1 =
√
N(GN,1 − 1) and ZN,i =

√
NGN,i for i = 2, 3 . . ..

Diffusion limit for JSQ (Eschenfeldt and Gamarnik, 2015)

If (ZN,1(0),ZN,2(0))
P−→ (z1, z2) with z1 ≤ 0, ZN,3(0) = 0 as N →∞, then

(ZN,1,ZN,2,ZN,3)⇒ (Z1,Z2, 0) in D3 where

Z1(t) = z1 +
√

2B(t)− βt −
∫ t

0
Z1(s)− Z2(s)ds − U(t)

Z2(t) = z2 + U(t)−
∫ t

0
Z2(s)ds

B is a brownian motion, and U is the unique non-decreasing process so
that U(0) = 0,

∫ t
0 I{Z1(s)<0}dU(s) = 0 and Z1 ≤ 0.
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Can JSQ(d) be as good as JSQ?
letting d →∞

Need dN →∞ for a typical customer’s waiting time to vanish like in JSQ

(Gamarnik, Tsitsiklis, Zubeldia, 2016).

(Mukherjee, Borst, Leeuwaarden, Whiting 2018)

As long as dN →∞, the first order (fluid-scale) limiting behaviors of
JSQ(dN) and JSQ agree. (Universality of fluid limit.)

The second order (diffusion-scale) behavior of JSQ(dN) in the
Halfin-Whitt regime is the same as JSQ if dN√

N logN
→∞. (Diffusion

level optimality.)

We provide explicit limit theorems for first and second order behavior of
JSQ(dN), as dN →∞ and λN → 1.
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Crash course on Skorokhod map

If x ∈ D+
.

= { f ∈ D | f (0) ≥ 0 },
then ∃! y ∈ D+ so that

z(t) = x(t) + y(t)

z(t) ≥ 0

y satisfies
I y(0) = 0
I y is non-decreasing
I
∫
[0,∞)

z(s)dy(s) = 0

Explicit Skorokhod map

Define Φ : D+ → D2
+ by

Φ(x) = (z , y) where

y(t) = sup
0≤s≤t

x−(s)

z(t) = x(t) + y(t)

Φ is Lipscitz with respect to the supremum norm

‖Φ(x)− Φ(y)‖∗,t ≤ 2 ‖x − y‖∗,t
where ‖f ‖∗,t = sups∈[0,t] |f (s)|.
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Fluid behavior of JSQ(dN)
Recall: GN(t) = (GN,1(t),GN,2(t),GN,3(t), . . .)

Fluid limit as dN →∞ and λN → λ

If GN(0)
P−→ (r1, r2, . . .) in l1, then GN

P−→ g in D([0,∞) : l1)

where g = (g1, g2, . . .) is the unique solution to

(gi , vi ) = Φ1

(
ri −

∫ ·
0
gi (s)− gi+1(s)ds + vi−1(·)

)
i = 1, 2, . . .

and v0(t) = λt. Φ1 : D≤1 → D2 is the Skorokod map at 1. Universality.

Proof uses tightness + uniqueness argument.

(Mukherjee, Borst, Leeuwaarden, Whiting 2018) identify limiting
equations but can’t show uniqueness.

Formulation using Skorokhod map shows uniqueness.
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Proof overview (fluid limit)

Representation as Poission time-change

For i = 1, 2, . . .

GN,i (t) =GN,i (0)− 1

N
Di

(
N

∫ t

0
GN,i (s)− GN,i+1(s)ds

)
+

1

N
Ai

(
λNN

∫ t

0
GN,i−1(s)dN − GN,i (s)dNds

)
where {Ai}i≥1, {Di}i≥1 are independent rate-1 poission processes.

Subtract compensators:

GN,i (t) =GN,i (0)−
∫ t

0
GN,i (s)− GN,i+1(s)ds

+ λN

∫ t

0
GN,i−1(s)dN − GN,i (s)dNds + MN,i (t)

MN(t) = (MN,i (t))i≥1 is a collection of martingales with E ‖MN‖∗,T → 0

Dewaskar (UNC) Power of many choices Probability Seminar, Jan 30th 2020. 24 / 33



Outline

1 Balls and bins
Power of choice (d = 1 vs. d = 2)
Dependence on d ≥ 1
How to choose d?

2 Supermarket model
Introduction
Analysis of join the shortest queue
Fluid limit for JSQ(dN) as dN →∞
Diffusion limit theorem

3 Summary

Dewaskar (UNC) Power of many choices Probability Seminar, Jan 30th 2020. 25 / 33



Ingredient : diffusion centering

Fix N. Omiting the martingale term, the previous ODE is:

GN,i (t) = GN,i (0)+

∫ t

0
(λNGN,i−1(s)dN − GN,i (s))ds

−
∫ t

0
(λNGN,i (s)dN − GN,i+1(s))ds

Unique fixed point : µN = (λN , λ
1+dN
N , λ

1+dN+d2
N

N , . . .) ∈ l1.

Diffusion scaled process

ZN =
√
N(GN − µN)

This is different from the usual fluid limit centering, which may not be
stable.
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Diffusion behavior for JSQ(dN) : reflected case

Recall: ZN =
(√

N(GN,1 − λN),
√
N(GN,2 − λ1+dN

N ), . . .
)

.

Diffusion limit as λN = 1−
(

log dN
dN

+ α√
N

)
and
√
N � dN � N2/3

If ZN(0)
P−→ (z1, z2, 0, 0 . . .) in l2 with z1 ≤ α, then ZN ⇒ (Z1,Z2, 0, 0 . . .)

in D([0,∞) : l2) where (Z1,Z2) satisfy

Z1,U1 = Φα

(
z1 +

√
2B(·)−

∫ ·
0

(Z1(s)− Z2(s))ds

)
Z2(t) = z2 + U1(t)−

∫ t

0
Z2(s)ds,

B is a standard Brownian motion and Φα : D≤α → D2 is reflection at α.

When dN �
√
N logN, limit agrees with JSQ (Eschenfeld and

Gamarnik, 2015) and (Mukherjee, Borst, Leeuwarden, Whiting 2018).
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Proof idea (diffusion limit)

Center and scale the generating equation

ZN,1(t) = ZN,1(0)−
∫ t

0
ZN,1(s)− ZN,2(s)ds

+
√
NMN,1(t)−

∫ t

0
tN,1(ZN,1(s))ds

ZN,2(t) = ZN,2(0) +

∫ t

0
tN,1(ZN,1(s))ds −

∫ t

0
ZN,2(s)ds + op(1).

Under hyothesis
√
NMN,1 ⇒

√
2B.

Reflection term

Fix any M > 0. Then uniformly on z ∈ [−M,M]

tN,1(z) = (1 + o(1)) exp

(
dN√
N

(z − α)

)√
N

dN
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Proof outline (diffusion limit)
Choose M > 0: TN,M = inf { t | ‖ZN(t)‖2 ≥ M } ∧ T

ZN,1 will not exceed α on [0,TN,M ]

sup
t∈[0,TN,M ]

(ZN,1 − α)+
P−→ 0

Rewrite using skorokhod map

ZN,1,UN = Φα

(
ZN,1(0)−

∫ ·
0
ZN,1(s)− ZN,2(s) +

√
2BN(·)

)
+ op(1)

ZN,2(t) = ZN,2(0) + UN(t)−
∫ t

0
ZN,2(s)ds + op(1)

where BN ⇒ B, and the op(1) terms converge uniformly on [0,TN,M ].

Tightness

Choose M large enough so that TN,M ≥ T enventually.
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Diffusion behavior for JSQ(dN) : non-reflection case

Diffusion limit as dN√
N
→ 0 and dNµN,k+1 → α

If ZN(0)
P−→ (z1, . . . , zk+1, 0, 0, . . .) in l2, then

ZN ⇒ (0, . . . , 0,Zk ,Zk+1, 0, 0, . . .), where

Zk(t) = zk − (α + I{k=1})

∫ t

0
Zk(s)ds +

∫ t

0
Zk+1(s)ds +

√
2B(t)

Zk+1(t) = zk+1 + α

∫ t

0
Zk(s)ds −

∫ t

0
Zk+1(s)ds

.

Here B is a standard Brownian motion.
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Future direction : distributed load balancing

Blogs interested in distributed balancing using Power-of-d scheme:

Nginx

Haproxy

Mark’s

Network model from (Budhiraja, Mukherjee, Wu, 2019).
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https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/#least_conn
https://www.haproxy.com/blog/power-of-two-load-balancing/
https://brooker.co.za/blog/2012/01/17/two-random.html
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