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Why? Slightly wrong models + Big-data =
Brittleness
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Big Data and Statistical Challenges
Some examples of Big Data:

1. Retail: Walmart generates 1 million customer transactions/hr.

2. Health: A billion Electronic Health Records are collected in
the US/year.

3. Science: Sloan Digital Sky Survey (200 GB/night) and Large
Hadron Collider experiments (25 petabytes/year)

Isn’t big data all that is necessary? Do we still need Statistics?

Yes. The data:
▶ may have sampling or selection bias
▶ may have unknown data collection artifacts

Reference: Special issue of Statistics & Probability letters, Vol. 136

Need a new framework for statistical modeling of large datasets.
▶ For example, classical theory only assumes sampling

uncertainty, leading to order n−1/2 estimation errors (CLT).
▶ For large n, these errors are often wrongly overconfident.
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Fit Interpretable Models to Big Data

▶ Focus on inference using interpretable models with finitely
many parameters and not black boxes for prediction.

▶ Inevitable model misspecification due to: outliers, data
contamination, and assumptions like Gaussianity.

▶ Concern with brittleness: sometimes even slight
misspecification can have substantial impact on inference,
especially for large sample sizes.

▶ But how to account for this? The usual method does not
account for additional uncertainty due to misspecification.
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Example I: Brittleness in mixture model selection
Example from Miller & Dunson (2015) that has minor misspecification in the kernel

Data is generated from a mixture of two skew Gaussians:

Fit a Gaussian mixture model with prior on the # of components:

Brittleness: as n → ∞, the posterior favors large # of components.
References: Miller & Dunson (2019). Theory by Cai, Campbell, Broderick (2021).
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What? Fuzzily fit “slightly wrong” models
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Example II: Brittleness of MLE to outliers
Outliers/data contamination corresponds to misspecification in Total Variation (TV)

95% of data points are drawn
from an equal mixture of true
Gaussians while 5% are
contaminated in some way..
Can we fit our model in a way
that is robust to the 5%
contaminated data?

▶ Maximum Likelihood Estimates (MLE) is known to be brittle
to data contamination. This has led to the field of robust
statistics (e.g. influence functions). Reference: Maronna, Martin, Yohai (2019).

▶ Problem persists even if you try to fit k ≥ 2 mixture
components. Small contamination can badly affect the MLE.

▶ This is small misspecification in the total-variation distance.
Optimistically Weighted Likelihood (OWL) automatically
corrects for this problem.
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Problem summary

Interpretable models will tend to be slightly misspecified.

For large n, standard inference (Bayes/MLE) can be problematic
even under minor misspecification.

Problem: Find a way to fuzzily/inexactly fit models that may be
slightly misspecified.

Formalism
Suppose {Pθ}θ∈Θ is our model family, and Po is the true distribution of
the observed data. Assume misspecification: Po /∈ {Pθ}θ∈Θ.

The Bayesian posterior and MLE target [Kleijn and van der Vaart (2012/2006)]

θ1 = argmin
θ∈Θ

KL(Po |Pθ).

which may be brittle to the tails and support of Po .

We want to find θ0 ∈ Θ such that Pθ0 ≈ Po (in Wasserstein, TVD, etc.).
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How? Optimism: perturb data to improve model
fit
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Key idea: fit models robustly by trusting data less

1. Assume that observed data are a biased, unreliable, or corrupted
version of the “ideal” data drawn from the model Pθ0 .

2. We should be skeptical of the observed data and trust it less.

3. Data points that do not conform with the model Pθ0 should not be
allowed to unduly influence the parameter estimates.

This can address the examples of brittleness we saw earlier. But we don’t
know the true model Pθ0 (we want to estimate it!)

This idea has appeared in the literature on learning from imprecise data.

Roughly, the idea is to [...] fit the model to the data and the
data to the model [simultaneously]. – Eyke Hüllermeier

[Hüllermeier, 14], [Hüllermeier & Cheng, 15], [Hüllermeier, Destercke and Couso, 19], [Lienen, Ḧllerme, 21a,b]

Optimistically re-interpret data
Compute MLE based on a best-case dataset “near” the observed dataset.
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We use re-weightings to represent nearby datasets

Optimistic re-weighting in Example 2 perturbs the data to look like
it was drawn from a mixture of two Gaussians.

This is best-case data perturbation in contrast to the worst-case
perturbation used in DRO (Namkoong & Duchi, 2016).

12 / 34



We use re-weightings to represent nearby datasets
Optimistic re-weighting in Example 2 perturbs the data to look like
it was drawn from a mixture of two Gaussians.

This is best-case data perturbation in contrast to the worst-case
perturbation used in DRO (Namkoong & Duchi, 2016).

12 / 34



Why use data re-weightings?

Suppose x1, . . . , xn
i.i.d.∼ Po . We can consider the re-weighted distribution:

Qw =
1

n

n∑
i=1

wiδxi

for weights w1, . . . ,wn ≥ 0 and
∑n

i=1 wi = n.

Re-weightings:

▶ are powerful. Re-weightings can transform samples from Po to
those of any absolutely continuous distribution Q using
Radon-Nikodym derivatives. (E.g. Gaussian to a t or Gamma
distribution.)

▶ require simple modifications to existing algorithms. It turns out
that one only needs to adopt existing algorithms for MLE or Bayes
posteriors to work with weighted likelihoods

∏n
i=1 pθ(xi )

wi .

▶ are interpretable. Weights provide a summary of how much each
observation is trusted by the estimated model.
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Optimistic re-weighting: an operational definition
Suppose data x1, . . . , xn

i.i.d.∼ Po and a model family {pθ}θ∈Θ is given.

Optimistic weights w1, . . . ,wn ≥ 0 and
∑n

i=1 wi = n are such that

1

n

n∑
i=1

|wi − 1| ≤ ϵ [ϵ-total variation (TV) perturbation]

θ̂ = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi [Weighted Likelihood]

that satisfy

Pθ̂ ≈ 1

n

n∑
i=1

wiδxi [OWL].

▶ There is no need for optimism in the well-specified case. That is,
[OWL] holds with ϵ = 0 and wi = 1 (MLE).

▶ Otherwise the degree of optimism is related to the degree of
misspecification. Weights satisfying [OWL] exists ⇐⇒
dTV(Po ,Pθ∗) ≤ ϵ for some θ∗ ∈ Θ.
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Robust model estimation: setup and assumptions

Setup: fit model family {Pθ}θ∈Θ
based on data x1, . . . , xn

i .i .d .∼ Po .

ΘI = {θ | dTV(Po ,Pθ) ≤ ϵ} are
robustly identified parameters.

Assumption: ΘI ̸= ∅.

{Pθ}θ∈Θ

Bϵ

Po

Bϵ = {Q : dTV(Q,Po) ≤ ϵ}

Example (Huber’s contamination model)

If Po = (1− ϵ)Pθ∗ + ϵC , then θ∗ ∈ ΘI .

▶ Identifiability only upto ΘI . This is not a practical problem as
ΘI is small when ϵ is small [Huber, 1964].

▶ OWL aims to estimate some element from ΘI .
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Robustly identified parameters are minimizers of OKL
Suppose Po and ϵ ≥ 0 are known.
We define the following population level objective function:

Optimistic Kullback Leibler (OKL) from Large Deviations

Iϵ(θ) = min
Q:dTV(Q,Po)≤ϵ

KL(Q|Pθ),

A unique minimizer Qθ exists [Csiszar, 1975] and is called the
information projection of Pθ on Bϵ = {Q : dTV(Q,Po) ≤ ϵ}.

▶ When ϵ = 0, I0(θ) = KL(Po |Pθ).
▶ For ϵ > 0, one finds an Optimistic data re-interpretation

Qθ ∈ Bϵ that minimizes the KL divergence to Pθ.

The robust parameters ΘI can be seen as the minimizers of OKL:

argmin
θ∈Θ

Iϵ(θ) = ΘI
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Optimistically Weighted Likelihoods (OWL)
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Minimize the OKL function using alternating optimization
Minimizing the OKL function corresponds to solving the double
minimization:

min
θ∈Θ

min
Q:dTV(Q,Po)≤ϵ

KL (Q|Pθ) .

Following EM/MM algorithms, this can be done using the
following alternating minimization scheme.

Start from some θ1 and iterate (for t = 1, . . .) until convergence:

Information-projection:

Qt = argmin
Q:dTV(Q,Po)≤ϵ

KL(Q|Pθt )

Maximize log-likelihood:

θt+1 = argmax
θ∈Θ

∫
log pθ(x)Qt(dx)
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The Optimistically Weighted Likelihood Algorithm
Emulate the previous algorithm based on a consistent estimator of the
OKL function using samples x1, . . . , xn ∼ Po . We want to solve

min
θ∈Θ

min
Qw :dTV(Qw ,Po)≤ϵ

K̂L (Qw |Pθ) .

where Qw = n−1
∑n

i=1 wiδxi .

This leads following alternating optimization steps (for t = 1, . . .)

Approx I-projection:

w t+1 = argmin
w∈∆n

1
2∥w−o∥1≤ϵ

n∑
i=1

wi log
nwi p̂(xi )

pθt (xi )

Weighted-MLE:

θt+1 = argmax
θ∈Θ

n∑
i=1

w
(t+1)
i log pθ(xi )

▶ w -step is convex: Alternating Direction Method of Multipliers
(ADMM) [Parikh & Boyd, 2014]

▶ θ-step: modification of algorithms for MLE.
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Optimistically Weighted Likelihood (OWL) summary
▶ Theoretically motivated from OKL minimization.
▶ We jointly estimate parameter and data-weights by repeated

weighted likelihood maximization:

θt+1 = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi (θt)

where weights are defined by the I -projection of {pθ(xi )}ni=1

onto the intersection of ℓ1 ball Bϵ = {w : ∥w − 1∥1 ≤ nϵ} and
the simplex of weights.

▶ ϵ ∈ (0, 1) denotes amount of model misspecification, which
can automatically be tuned from data.

Features
▶ Weights assign a confidence to each data point.

▶ Implemented for a variety of models with product likelihoods:
Linear/Logistic Regression and Bernoulli/Gaussian Mixtures.

▶ Customizable code: https://github.com/cjtosh/owl
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Robustify likelihoods by Optimistic Data Re-weighting

Introduction
Why? Slightly wrong models + Big-data = Brittleness
What? Fuzzily fit “slightly wrong” models
How? Optimism: perturb data to improve model fit

OWL Methodology
Theoretical foundations of Optimism
Optimistically Weighted Likelihoods (OWL)

Applications
Micro Credit study
Clustering of scRNA-Seq data
Concluding remarks
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Micro Credit study
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Micro-credit study by Angelucci et al. (2015)
Randomized credit rollout across 238 geographical regions in
north-central Sonora state, Mexico; and 18-36 months after
rollout, surveyed n = 16, 560 households across the region to
understand impact.

Consider the Average Treatment Effect (ATE) on household profits
(i.e. the coefficient β1) in the model:

Yi = β0 + β1Ti + εi i = 1, . . . , n

Yi = Profit of household i (outcome; units: USD PPP/2 weeks),
Ti ∈ {0, 1} indicates whether household i falls in a region where
credit rollout happened (treatment).

OLS estimate of β1 is brittle [Broderick, Giordano & Meager, 2023]

Removing a single household changes β1 from −4.55 (s.e. 5.88) to
β1 = 0.4 (s.e. 3.19); removing 15 households makes β1 significant.
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Estimating β1 from the micro-credit study using OWL

▶ We estimate β1 using OWL for 50 values of ϵ placed uniformly on
log10-scale from −4 to −1.

▶ Tuning procedure selected ϵ0 = 0.005. OWL down-weighted 1% of the
households with extreme profit values.

▶ Estimated ATE of β1 = 0.6 USD PPP/2 weeks at ϵ = ϵ0, is stable with
respect to ϵ, and has relatively narrow bootstrap confidence bands than
ϵ ≪ ϵ0. 26 / 34



Clustering of scRNA-Seq data
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Clustering single cell RNA-Seq using Gaussian mixtures

GSE81861 cell line dataset from Li et al. (2017)

Expression measurements for 7666 genes across 531 cells
(after processing as in [Chandra et al., 2020]).

Ground truth cell-lines available:

Cell line A549 GM12878 H1 H1437 HCT116 IMR90 K562
# 74 126 164 47 51 23 46

making this ideal to validate clustering methods.

▶ We use PCA to project expressions to 10 dim and fit a
mixture of 7 Gaussians using OWL for a grid of ϵ values.

▶ Compared the resulting clustering to the ground truth cluster
labels using adjusted Rand Index [Hubert and Arabie, 1985]
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OWL improves clustering, especially on inliers

Left: Adjusted Rand index (ARI) over the entire dataset for OWL.

Right: ARI of inliers for the OWL methods.
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Visualizing clusters using UMAP
Uniform Manifold Approximation and Projection. See GM12868 v.s. K562, and IMR90.
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Concluding remarks
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Summary

Our primary objective has been to develop methods to
fuzzily/inexactly fit likelihood-based models to complex data.

▶ Our key idea is to let the model inform which data points we
trust, and would like to allow to influence our model fit.

▶ OWL (Optimistically weighted likelihood) implements a
practical version of this scheme by looking for weighted
perturbations in a small TV-neighborhood of the observed
data that can improve the model fit.

▶ OWL is implemented as an alternating minimization that
jointly estimates the model (via weighted MLE) and the
optimistic weights (via I-projection).

▶ OWL weights down-weighted outliers in Micro credit study
and improved clustering on inliers in scRNASeq data.
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Future directions

Tons of exciting areas to work on!

▶ Coarsened Inference: Although we only considered robust
point estimation and not inference, OWL is statistically
motivated by coarsened inference framework of Miller &
Dunson, 2019. Currently, we are working on a theory for
robust Bayesian inference, allowing for robust uncertainty
quantification and model selection.

▶ Models beyond product likelihoods: The coarsened
inference philosophy allow us to move beyond models with
product likelihoods. I am interested in extensions to
hierarchical and spatio-temporal models, particularly in
applications to climate modeling.

▶ Interesting Applications to differential private inferences,
borrowing information across historical data in clinical trials,
and data compression problem.
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Thanks for your attention!

Code https://github.com/cjtosh/owl

Preprint https://arxiv.org/abs/2303.10525
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Robustify likelihoods by Optimistic Data Re-weighting

Statistical Foundations
Coarsened Inference Framework
Computation of the coarsened posterior
Estimator for Optimistic Kullback Leibler (OKL)
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Coarsened Inference Framework
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Handle misspecification by “coarsening” posterior
From Miller and Dunson (2019). Trust the data less.

We observe data x = x1, . . . , xn
i .i .d .∼ Po from unknown Po ∈ P(X ).

Bayesian model: X = X1, . . . ,Xn
i .i .d .∼ Pϑ and ϑ ∼ π0

where {Pθ}θ∈Θ is a parametric family, π0 is a prior on Θ.

Empirical measure: P̂x
.
= 1

n

∑n
i=1 δxi is a sufficient statistic.

Standard Posterior:

p(dθ|x) .
= Pr

(
ϑ ∈ dθ

∣∣P̂X = P̂x

)
Coarsened (C-) posterior:

pϵ(dθ|x)
.
= Pr

(
ϑ ∈ dθ

∣∣d (P̂X , P̂x) ≤ ϵ
)

▶ Allows misspecification: P̂X is ϵ-close in the discrepancy d on
P(X ) (but not necessarily equal) to the observed data P̂x .

▶ pϵ(dθ|x) → p(dθ|x) as ϵ → 0 under suitable conditions.
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Computation of the coarsened posterior
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Computation of coarsened posterior
Bayes rule shows: pϵ(dθ|x) ∝ Lϵ(θ|x)π0(dθ) where

Lϵ(θ|x)
.
= Pr

(
d (P̂X , P̂x) ≤ ϵ

∣∣ϑ = θ
)

is the coarsened likelihood. But difficult to use MCMC, as even
evaluating Lϵ(θ|x) involves estimating a high dimensional integral.

Coarsened posterior is an average of standard posteriors:

pϵ(dθ|x) = E
[
p(dθ|X )

∣∣∣∣d (P̂X , P̂x) ≤ ϵ

]
.

Rejection sampling based approach leads to Approximate Bayesian
Computation (ABC). Slow convergence: conditioning event is “rare”.

Asymptotic approximation: When d = KL and ϵ ∼ Exp(α), Miller &
Dunson (2019) develop the power-likelihood approximation:∫

Lϵ(θ|x)αe−αϵdϵ ∝̃
n∏

i=1

pθ(xi )
α

n+α = L(θ|x) α
n+α

Usual likelihood with finite effective sample size n0 =
nα
α+n < ∞.
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General asymptotics of the coarsened likelihood

Sanov’s theorem from Large Deviations shows:

Theorem (D., Tosh, Knoblauch, Dunson, 2023)

−1

n
log Lϵ(θ|x)

P−→ Iϵ(θ)
.
= inf

Q∈P(X )
d (Q,Po)≤ϵ

KL(Q|Pθ)

We call Iϵ(θ) the Optimistic Kullback Leibler (OKL).

▶ d must be a nice, e.g. Maximum Mean Discrepancy, or
Wasserstein, or smoothed TV distance.

▶ Search over “optimistic” data Q in the (d , ϵ) ball around Po .

▶ Use: Finding θ ∈ Θ that maximizes θ 7→ Lϵ(θ|x) corresponds
to minimizing OKL: θ 7→ Iϵ(θ) (asymptotically).

▶ Case ϵ = 0, θ∗ is MLE ⇐⇒ θ∗ ∈ argminθ∈Θ KL(Po |Pθ).
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Estimator for Optimistic Kullback Leibler (OKL)
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Estimation of the OKL using data re-weightings
Finite spaces

Given data x1, . . . , xn ∼ Po ∈ P(X ), we use the estimator

Îϵ(θ) = min
w∈∆n

1
2
∥w−o∥1≤ϵ

n∑
i=1

wi log
nwi p̂(xi )

pθ(xi )

with o = (1/n, . . . , 1/n) to target the OKL:

Iϵ(θ) = min
Q:dTV(Q,Po)≤ϵ

KL(Q|Pθ).

Theorem (D., Tosh, Knoblauch, Dunson, 2023)
If X is finite and supp(Pθ) ⊆ supp(Po) for some θ ∈ Θ, then

Îϵ(θ) = min
w∈∆n:dTV(Qw ,P̂)≤ϵ

KL(Qw |Pθ) and
∣∣∣Iϵ(θ)− Îϵ(θ)

∣∣∣ = Op(n
−1/2)

where Qw =
∑n

i=1 wiδxi .
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Estimation of the OKL using data re-weightings
Continuous space X ⊆ Rd

Let κh be the Gaussian kernel on Rd with bandwidth h > 0,
qw (x) =

∑n
i=1 wiκh(xi , x), and A ∈ Rn×n with Aij =

κh(xi ,xj )
np̂(xi )

.

Îh,ϵ(θ)
.
= min

v∈A∆n
1
2∥v−o∥1≤ϵ

n∑
i=1

vi log
nvi p̂(xi )

pθ(xi )

= min
w∈∆n

dTV(qw ,p̂)≤ϵ

1

n

n∑
i=1

qw (xi )

p̂(xi )
log

qw (xi )

pθ(xi )
≈ min

w∈∆n
dTV(qw ,po)≤ϵ

KL(qw |pθ).

Theorem (D., Tosh, Knoblauch, Dunson, 2023)
If X ⊆ Rd is compact and smooth densities po , pθ are supported on X :∣∣∣Iϵ(θ)− Îh,ϵ(θ)

∣∣∣ = Op(n
−1/2h−d +

√
h).
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Further research directions

▶ Use of Wasserstein neighborhoods to fit models with
misspecified supports. For example, this allows us to fit
models with discrete support to continuous data to perform
data compression with uncertainty. Application: Brain
Connectome.

▶ Coarsened inference for Hidden Markov Models. We can use
LD formulas for HMMs (Hu and Wu, 2011) and divide &
conquer ideas for fast posterior computation in long time
series (Ou, Sen, Dunson, 2021).

▶ Connections to differentially private inference and informative
prior elicitation in clinical trials!
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Simulation study overview

We adversarially corrupted between 0% to 25% of the observations
with the largest likelihood values.

On the corrupted data we ran:

▶ MLE

▶ OWL with, both, known ϵ and tuned value of ϵ.

▶ Robust estimation methods when available: like Huber
regression & RANSAC MLE.

We repeated the experiment 50 times to obtain error-bars. MLE
on the uncorrupted sample was used as baseline.

OWL estimates with tuned ϵ are resistant to outliers, and have
better (or comparable) performance than other methods.
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Gaussian Mean Estimation
OWL with and without the KDE have similar performance
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Linear Regression
OWL competitive with RANSAC MLE (left) and Huber Regression (right)
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Logistic Regression
OWL most robust in terms of test-accuracy.
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Mixture models
OWL does better than MLE for mixture models.
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What is happening? Let’s visualize the data
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82% of the household profits are zero (after imputation).

15 households removed by zaminfluence package [Broderick et al.]
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OWL implementation details
Omitting KDE, extension to product likelihoods, and automatic tuning of ϵ

▶ Theory requires access to density estimator p̂, but in practice
we continue to get good empirical performance by omitting it.

▶ Thus we use the OKL estimator:

Îϵ(θ) = min
w∈∆n

1
2
∥w−o∥1≤ϵ

n∑
i=1

wi logwi −
n∑

i=1

wi log pθ(xi )

which is easy to extend to likelihoods that take a conditional
product form, including regression and mixture models.

How to set parameter ϵ ∈ (0, 1)?

▶ The non-increasing population function R(ϵ) = minθ∈Θ Iϵ(θ)
has a kink at ε0 = minθ∈Θ dTV(p0, pθ) after which it remains
zero and A1 holds.

▶ We use an automatic procedure to find the best “kink”
[Satopaa et al. 2011] in the R̂(ϵ) = minθ∈Θ Îϵ(θ) v.s. ϵ plot.
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Choice of parameter ϵ0 = 0.005
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OWL at ϵ0 downweight 1% households with extreme profit.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30
De

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
OWL Weight

-5K

-2.5K

0

2.5K

5K

7.5K

Ho
us

eh
ol

d 
pr

of
it 

(U
SD

 P
PP

/fo
rtn

ig
ht

)

19 / 20



OWL ATE estimates as function of ϵ
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The leftmost point is the MLE. Confidence bands correspond to
Outlier-Stratified Bootstrap.
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