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Overview of projects

Guided state space exploration of closed-loop control systems

Joint work with Manish Goyal and Parasara Sridhar Duggirala.

Groupwise cross-correlation mining in bi-view data

Joint work with John Palowitch, Mark He, Michael I. Love, and Andrew B. Nobel.
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Cyber-Physical Systems

Cyber-Physical Systems (CPS) are integrations of computation, networking, and
physical processes. Embedded computers and networks monitor and control the
physical processes, with feedback loops where physical processes affect compu-
tations and vice versa. [Derler et al., 2011]

Examples

Airplanes, medical monitoring, unmanned aerial
vehicles, smart grid, and autonomous cars.

Figure: https://f1tenth.org/
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Technical Challenges in modelling Cyber Physical Systems (CPS)

From https://ptolemy.berkeley.edu/projects/cps//

The key technical challenge [in modelling CPS] is to conjoin abstractions that
have evolved over centuries for modeling physical processes (differential equa-
tions, stochastic processes, etc.) with abstractions that have evolved over
decades in computer science [...]. The former abstractions focus on dynamics
(evolution of system state over time), whereas the latter focus on processes of
transforming data.

Requires tools at the intersection of Computer Science, Statistics and Dynamical
Systems, etc.; but is not simply a repackaging of old tools:

2013 lecture by Prof. Edward A. Lee, titled “Cyber-Physical Systems: A
Fundamental Intellectual Challenge”
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Our focus: Verifying safety of Cyber-Physical Systems (CPS)

It is important to ensure that the CPS that we deploy in the real world operate safely,
and do not malfunction in unexpected or adversarial scenarios.

Verifying this for CPS is challenging because of the increasing complexity of the
underlying systems as well as complex control algorithms (e.g. Neural Network
controllers).

Examples of mishaps caused by faults in controlling software:

Avionics Ariane 5, 1996 – software bug in the rocket’s Inertial Reference System.

Industrial Three Mile Island, 1979 – A malfunction and operator error resulted in
inadequate cooling water circulation to the reactor core causing it to
overheat and suffer a partial meltdown.

Medical THERAC-25 1986, a machine for radiation therapy, caused accidents.

Can we design tools that automatically search for ‘unsafe’ executions (if they exist)?
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Example of a linear closed-loop control system
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Mathematical formulation

System dynamics

The system state x(t) ∈ D ⊆ Rn at
time t evolves as

ẋ = f (x , u) (1)

where u ∈ Rm is the input to the
system.

Closed-loop assumption

Suppose that we use a
feedback-function u = g(x) that is
regulated by the system output.
For every x0 ∈ D

x(t) = ξ(x0, t) t ∈ R

denotes the unique trajectory
satisfying (1) with u = g(x) and
x(0) = x0.

Fix

I ⊆ D: the set of initial system
states

U ⊆ D: the collection of “unsafe”
states

T > 0: a terminal time

Finding unsafe trajectories

Does there exist x0 ∈ I and
t ∈ [0,T ] so that ξ(x0, t) ∈ U?
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How to find unsafe trajectories in non-linear systems?

Non-linearity may arise from the system dynamics (i.e. f ) or the controller (e.g.
when g is a Neural Network).

The solution to non-linear ODEs do not typically have a closed form, and hence
novel tools are needed to analyze safety of such systems.

We assume access to a forward simulator that estimates the path
ξ(x0, ·) : [0,T ] → D for each x0 ∈ I .

Existing tools in this domain

Reachable set analysis

Flow*, X. Chen et al

CORA, M. Althoff et al

Sherlock, Dutta et al

C2E2, P. S. Duggirala et al

DryVR, C. Fan et al

Search for unsafe trajectories

S-TaLiRo, Y. Annpureddy et al

Breach, A. Donze et al
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How to find unsafe trajectories in non-linear systems?..continued
State space exploration using sensitivity function

Sensitivity functions

Φ(x0, v , t)
.
= ξ(x0 + v , t)− ξ(x0, t)

Φ−1(x0, v , t)
.
= ξ−1(x0 + v , t)− ξ−1(x0, t)

where ξ−1(x , t) = ξ(x ,−t).

Explore new trajectories using inverse-sensitivity

If we can evaluate Φ−1(x0, v , t), then we can find a new curve that passes through the
point x0 + v at time t > 0.
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State space exploration using sensitivity function

Reachability Problem

Given destination z ∈ D and t ∈ [0,T ], find a x0 ∈ I such that ξ(x0, t) = z .

Goyal and P. S. Duggirala, 2020

Use neural networks to learn Φ−1 from system traces in order to address reachability.
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Using neural networks to learn the sensitivity function

Choice of Neural Network Architecture

Neural networks are universal approximators [Gühring et al., 2020] that can learn
smooth functions based on collections of input-output pairs.

Although there is increasing theoretical understanding of Deep Networks (see e.g.
[Bartlett et al. 2021], [He and Tao, 2021], and [Berner et al. 2021]), training neural
networks still remains more of an art than science.

We used a NN with 3 layers with 512 neurons each (activation RBF for Layer 1 and
ReLU for Layers 2 and 3), and an output layer with linear activation.

Generating training sets

From two neighboring trajectories {xih}T/h
i=0 and {x ′

ih}
T/h
i=0 generate input-output pairs

Φ−1(xt , x
′
t − xt , t) = x ′

0 − x0 t ∈ {h, 2h, . . . , }

for learning Φ−1.

1 Simulate trajectories starting from M = 40 initial (random) points for time T .

2 For each initial point, L = 10 trajectories are generated at random starting from
starting from a small neighborhood ∥v∥ = 0.01 of the point.
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NExG: Learn only the direction of sensitivity vector for small perturbations
Goyal, Dewaskar and P. S. Duggirala, 2022

The iterations in Goyal and P. S.
Duggirala, 2020 are not guaranteed to
converge once they reach a certain
neigborhood.

Reason: the error in NN approximation
to Φ−1(x0, v , t) does not converge to
zero as the perturbation v converges to
zero.

We address this issue in NExG by using
neural networks to learn only the
direction vector Φ̃−1 = Φ−1/∥Φ−1∥ for
small perturbations.

When ∥v∥ ≪ 1, by Taylor’s expansion

Φ̃−1(x0, v , t) ≈
∇vΦ

−1(x0, 0, t)e

∥∇vΦ−1(x0, 0, t)e∥

where e = v/∥v∥.

Figure: Reachability using the exact
“compass” Φ̃−1
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NExG: Convergence theorem via a contraction argument
Goyal, Dewaskar, and P. S. Duggirala, 2022

Sensitivity approximation error using NΦ−1

∥NΦ−1(xt , v , t)− Φ−1(xt , v , t)∥ ≤ εrel∥Φ−1(xt , v , t)∥+ εabs

for any xt ∈ D, t ∈ [0,T ], and ∥v∥ ≤ r .

Assumptions

NΦ−1 satisfies the above approximation bounds.

The system satisfies suitable growth bounds, and initial set is unconstrained (I = D.)
Error coefficients εrel, εabs > 0 are sufficiently small (depending on system growth).

Theorem

The distance dist(k) between the destination and the output after k iterations of the
Perturbation Algorithm using NΦ−1 satisfies:

dist(k) ≤ (1− sγϵ)
kdist(0) + cεabs ∀k ≥ 1

where s ∈ (0, 1] is the scaling factor, γϵ ∈ (0, 1) and c are values independent of k.
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Performance on benchmarks with neural feedback controllers
NExG has better convergence performance compared to Neural Explorer

We performed comparative analysis with Neural Explorer and S-TaLiRo across 20
benchmark systems with Neural Feedback Controllers (taken from ARCH test suite).

Relative error for NExG was 1-3% as compared to 10-15% for Neural Explorer, with
fewer simulation.

Figure: NExG
Figure: Neural Explorer [Goyal and P.
S. Duggirala, 2020]
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Performance on benchmark with neural feedback controllers
NExG features: course-correction period p

One can reduce operational cost by
simulating new trajectory less often, a step
we call as course-correction.

Figure: Trajectory simulation at every
iteration (p = 1)

Figure: Trajectory simulation once
every 3 iterations (p = 3)
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Performance on benchmarks with neural feedback controllers
NExG feature: satisfying initial constraint by projection
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Application to finding an unsafe counterexample
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Summary: guided state-space exploration in closed-loop control systems
using sensitivity approximation

We saw:

How to explore new system trajectories by learning the sensitivity function for the
system.

NExG learns the sensitivity direction for small perturbations using a neural network
based on simulated system traces.

We theoretically & empirically (on benchmark systems with Neural Feedback
Controller) demonstrate state space exploration to assess reachability and to find
unsafe trajectories.

Arxiv Manuscript: https://arxiv.org/pdf/2207.03884.pdf

Future directions to address limitations of current work

Move from benchmarks (currently upto 6D) to Industrial systems (e.g. Auto ACAS
F-16)

Extend convergence guarantees to the case of a constrained initial set, and for tasks
beyond reachability – for instance, safety and general MTL specification.

Rigorously assess the approximation error between true sensitivity function and its
Neural Network based approximation.
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Bi-view data and a related exploratory problem

S

T

Samples

Measurements of two types of features

S = {s1, . . . , sp} & T = {t1, . . . , tq}
on n common samples. Typically p, q ≥ n.

Examples

Samples are temporal measurements from

S ={p temperature stations} and

T ={q precipitation stations} worldwide.

Taken from diverse habitats, samples measure

S ={p environmental features} and

T ={q microbial species} abundance.

How are features from S and T associated?
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Exploratory problem of interest

S

T

Samples

cross-correlation

We distinguish between two types of correlations

cross-correlation (CC) b/w features s ∈ S and t ∈ T

intra-correlation b/w features s, s ′ ∈ S or t, t′ ∈ T .

Bimodule (rough definition)

(A,B) is a bimodule if

A ⊆ S and B ⊆ T

A and B have significant aggregate CC.

Motivation to aggregate CCs

Capture complex associations between feature

groups A and B

Improve power by amplifying weak signal
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Bimodules from a network perspective
cross-correlation (CC) networks

S = {s1, . . . , s5}, T = {t1, . . . , t4}
Weights: sample correlation (abs.)

Bimodules: communities in this network.

Example: A = {s3, s4, s5} and B = {t3, t4}.

Community (rough definition)

Nodes in a community are more correlated,

on average, to nodes inside the community

than to nodes outside.
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Almost cross-correlation communities: role of intra-correlations

.99

.99

A = {s1, . . . , s5}, B = {t1, t2, t3}

(A,B) is a community in the CC network.

Likely to see this community by chance in

random data?

Yes

Depending only on CC can mislead.

Must account for intra-correlations

while assessing bimodule significance.
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Stable Bimodules

s

t
r
2 (s, t)

S T

A B

r 2
(s,B)

...
...

Notation

r(s, t): sample correlation of s, t

r 2(A′,B ′)
.
=

∑
s∈A′

∑
t∈B′ r

2(s, t)

Stable bimodule (definition)

(A,B) is a stable bimodule if

A = {s ∈ S | r 2(s,B) is significant}, and

B = {t ∈ T | r 2(A, t) is significant}.

Recursive definition like a community; made precise

using hypothesis testing ( details ).

Permutation test accounts for intra-correlations.

Benjamini-Yekutieli correction for multiple testing.

Interested in connected stable bimodules
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Bimodule Search Procedure: example run

1 B0 = {T3}
2 A0 = {S4, S5}
3 B1 = {T3,T4}
4 A1 = {S3, S4,S5}
5 B2 = {T3,T4}
6 A2 = {S3, S4,S5}

(A1,B1) = (A2,B2)

Stable bimodule found.
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Data from GTEx project (v8)
from gtexportal.org

NIH funded GTEx project
A large collection of multi-tissue eQTL
data from donors.

Individuals densely genotyped
Measurements for 4.9 million SNPs
encoded as {0, 1, 2} (MAF).

Expression measured in multiple
tissues
RNA sequencing used to measure
expression of genes.

Normalization, quality control, and
covariate correction performed.

Genomics glossary
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eQTL analysis for Thyroid data

n = 574

S
:
5
5
6
K

S
N
P
s

T
:
2
6
K

g
en

es

s

t

Thyroid expression data from n = 574 donors for
T = {26K genes} and
S = {556K representative SNPs} (after LD-pruning)

standard eQTL analysis

Find pairs s ∈ S and t ∈ T for which r 2(s, t) is significant
after correcting for multiple-testing (limits statistical
power).

Groupwise eQTL: find SNP-gene bimodules
(CONDOR)

Platig et al. (2016) find SNP-gene bimodules by
community detection on a bipartite graph obtained from
standard eQTL analysis.

They show that SNP-gene bimodules may Hence
bimodules may represent a group of SNPs that disrupt
the functioning of gene regulatory networks and
contribute to diseases

We use the Bimodule Search Procedure!
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Running BSP on GTEx Thyroid data
Highlights of results and validation

BSP has a single free parameter α ∈ (0, 1) that was chosen using permutation to control a
network-based false-discovery rate.

Scatter plot BSP found 3305 bimodules in 4.7 hrs (20-core/2.4 GHz machine) of various
sizes, having 1-1000 SNPs & 1-100 genes.

Locations analysis Local and distal SNP-genes pairs in bimodules: most bimodules had at least
one local SNP-gene pair, while larger bimodules had distal associations.

Network analysis Connected SNP-gene networks underlying bimodules. Note: stable bimodule
are defined in terms of aggregate associations, and all SNP-gene pairs in a bimodule do not
have to be eQTLs.

BSP vs. standard analysis BSP Bimodules vs. standard eQTL-analysis: most bimodules were
connected under eQTLs, but new potential eQTLs were discovered by the remaining
bimodules. Most of distal eQTLs, and half of local eQTLs were found by bimodules.

GO analysis Gene ontology analysis : many bimodule were enriched for overlap with biological
process related gene sets from the GO database, but the significant GO terms did not seem
thyroid related.
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Summary: groupwise cross-correlation mining in bi-view data

Bimodule: a group of features in bi-view data with significant aggregate
cross-correlation, and a community in the cross-correlation network.

Bimodule Search Procedure. Finds stable and connected bimodules – a fixed point
condition based on hypothesis tests. Parallel R implementation.

Application to eQTL analysis. SNP-gene bimodules may provide more insights than
traditional pairwise analysis.

Future directions: Theoretical false discovery guarantees for the Bimodule Search
Procedure. Extensions to multi-view data and other types of correlations.
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Appendix
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BSP implementation details

Start from all singletons {s} in SNPs and {g} in Genes, to find a bimodule list B
(possibly empty).

Bimodules often repeat in B, so we filter duplicates:
1 Determine effective number:

Neff =
∑

(A,B)∈B

∑
a∈A,b∈B

(|A||B|N(a, b))−1

2 Hierarchical-cluster elements of B based on Jaccard distances.
3 Select a height to cut the dendrogram so that Neff clusters are made.

R package with fast implementation : https://github.com/miheerdew/cbce.
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Analysis of genomic locations of bimodules

Recall BSP does not use genomic locations of SNPs and Genes. Nevertheless

Proximity of SNPs and genes within the
bimodule.

Almost all (99.3%) bimodules have at
least one local SNP-gene pair.

In addition, almost half of the larger
bimodules found gene and SNPs that
had distal effects.

Chromosomal locations of SNPs and genes
from bimodules.

Bimodule SNPs and Genes distributed
across all 23 chromosomes.

Most small bimodules (95%) were
restricted to single chromosome.

Nearly half of the larger bimodules
spanned 2-11 chromosomes each.
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Concepts from genomics (simplified version)
genome.gov/genetics-glossary

Gene expression Process
used by cells to assemble
protein molecules based on
a gene.

Gene A region of the genome that encodes
for a protein; ∼30K genes identified in
humans.

Single nucleotide polymorphism (SNP) A
location on the genome that has a
nucleotide variation within the population.

Genetic basis of gene expression Millions
of SNPs are identified in humans. Which
ones influence traits?

Expression quantitative trait loci (eQTL)

A genomic region (e.g. SNP) that influences
the expression level of one or more genes.
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Obtaining networks from bimodules

A SNP-gene bimodule (A,B) has aggregate correlation between A and B.

But which edges (s, t) ∈ A× B are significant?

Threshold at τ ∈ (0, 1): Eτ (A,B) = {(s, t) | r 2(s, t) ≥ τ 2, s ∈ A, t ∈ B}

How to choose τ?

Conservative estimate of strongest edges

Since a bimodule must be connected, choose the largest τ∗ ∈ (0, 1) so that
(A ⊔ B,Eτ∗(A,B)) is a connected graph.

Eτ∗(A,B) are called essential-edges of the bimodule.

Thyroid network statistics

Dewaskar ( UNC Chapel Hill & Duke University ) State Space Exploration & Correlation Mining 43 / 53



Network statistics from BSP bimodules on GTEx data

Smaller bimods are connected mainly by strong local associations (large τ∗). Eτ∗ is
tree-like.
Larger bimods are connected by strong local + weak distal associations (small τ∗). Eτ∗

has upto 10x more edges than a tree.
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Enrichment of known gene sets in bimodules

The GO database (http://geneontology.org/) contains collection of gene sets known to
be associated with biological functions.

Consider our 145 bimodules that have 7 or more genes.

We used Fisher’s test to assess overlap of gene sets from these bimodules with GO
sets.

Gene sets from 18 bimodules had significant overlap with gene sets associated to
known biological processes.

But the associated function did not seem thyroid relevant.

Repeating above process with randomly chosen gene sets of the similar sizes did not
detect significant association.
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Sizes of bimodules discovered by various methods
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BSP Thyroid search details

Search details

304K attempted searches.

Majority (277K) give empty set in the first iteration.

Few (20) did not terminate within 20 iterations.

Remaining reached a fixed point in 20 iterations.

92.3% of these fixed points contained the seed singleton.
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Assessing significance using hypothesis testing

How to quantify ΓT?

ΓT (A)
.
= {t ∈ T | r 2(A, t) is significant}.

Steps

1 ∀t ∈ T obtain p-value p(A, t) from r 2(A, t).

2 reject p-values using multiple-testing correction γα

ΓT (A) = {t ∈ T | p(A, t) ≤ γα}

at some level α ∈ (0, 1).

p(A, t) conditional on intra-correlations in A

A

t

Samples

perm π

r 2π(A, t)

Permutation p-value

Pπ

(
r 2π(A, t) ≥ r 2obs(A, t)

)
Fast computation + other details

Dewaskar ( UNC Chapel Hill & Duke University ) State Space Exploration & Correlation Mining 48 / 53



Hypothesis testing implementation details

Permutation p-values Permute sample labels of t using π. Define p-value

pA(t)
.
= Pπ

(
r 2π(A, t) ≥ r 2(A, t)

)
,

which conditions on correlations in A.

Multiple testing correction The adaptive threshold γα chosen from [Benjamini and
Yekutieli, 2001] controls FDR at α.

Monte-Carlo estimation too slow. We fit a shifted gamma distribution to T = r 2π(A, t)
based on top 3 moments. Moments of T are analytical approximated [Zhou, Gallins and
Wright, 2019].
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Essential-edge networks in GTEx thyroid data
examples from two bimodules
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Comparing bimodules to standard eQTL analysis

Standard eQTL analysis performed using MatrixEQTL (α = 0.05).

Bimodules find most standard eQTLs

84% of eQTLs from trans-analysis, and 51% of eQTLs from cis-analysis. But note

bimodules find SNP-gene networks not just pairs, and

cis-analysis improves power by restricting to local pairs.

New potential eQTLs from bimodules

224/358 large bimodules are not connected under edges from standard cis+trans analysis.

Essential-edges from bimodules reveal 300 local and 8.8k distal SNP-gene pairs that

are not detected by standard analysis,

but show significance at the network level.
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Bimodule Search Procedure (BSP)

s

t
r
2 (s, t)

S T

A B

r 2
(s,B)

...
...

r 2(A,B)
.
=

∑
s∈A

∑
t∈B r 2(s, t)

Note, stability is just a fixed point condition:

A = {s ∈ S | r 2(s,B) is significant} .
= ΓS(B)

B = {t ∈ T | r 2(A, t) is significant} .
= ΓT (A).

Find stable bimodules by iterating

(Ak ,Bk) = (ΓS(Bk), ΓT (Ak−1)) k = 1, 2, . . .

till sets don’t change, for suitable A0 ⊆ S .

Bimodule Search Procedure (BSP)

Starting from singletons A0 = {s} ∈ S , iterate the
definition till fixed point is reached (or sets cycle).

Covergence on real data Example of an iterative search
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Bimodule Search Procedure (BSP)

s

t
ρ
2 (s, t)

S T

A B

ρ 2
(s,B)

...
...

Population analysis (n → ∞) BSP
iterations converge to connected
components of the population
correlation network.

Note, stability is just a fixed point condition:

A = {s ∈ S | ρ2(s,B) > 0} .
= ΓS(B)

B = {t ∈ T | ρ2(A, t) > 0} .
= ΓT (A).

Find stable bimodules by iterating

(Ak ,Bk) = (ΓS(Bk), ΓT (Ak−1)) k = 1, 2, . . .

till sets don’t change, for suitable A0 ⊆ S .

Bimodule Search Procedure (BSP)

Starting from singletons A0 = {s} ∈ S , iterate the
definition till fixed point is reached (or sets cycle).

Covergence on real data Example of an iterative search
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